ANTIBACTERIAL ACTIVITY OF GYMNEMA SYLVESTRE HYDROALCOHOLIC LEAF EXTRACT.

Dr. Mayuri Thanwar¹, Dr. Dhananjay Dwivedi²

¹. Scientific Officer, Scene of Crime Mobile Unit Indore, (M.P).
². Assistant Professor, Department of Chemistry, P.M.B Gujarati Science College, Indore, (M.P).
Corresponding author: mayuri.than@gmail.com.

ABSTRACT
To investigate the antibacterial activity of hydroalcoholic extract of leaves of Gymnema sylvestre. The antibacterial activity was evaluated by agar well diffusion method against gram negative (Escherichia coli, Pseudomonas aeruginosa) and gram positive bacteria (Staphylococcus aureus) at various concentrations. The results of the present study suggest that leaf extract of Gymnema sylvestre can be used for treating infectious diseases caused by Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.

Keywords: Gymnema sylvestre, Hydroalcoholic extract, Antibacterial activity, Minimum inhibitory concentration.

INTRODUCTION
Gymnema sylvestre commonly known as Gudmar is a medicinally important branched woody climber, found in India. The plant is very popular for its distinctive property of temporarily destroying the taste of sweetness. In concern of drawbacks of conventional medicine, nowadays the use of natural products as an alternate to treat various diseases. About 80% of individuals from developed countries derived from medicinal plants. Therefore, such plants should investigate for a search of new potent antibacterial compounds.

The plant reported to treat various ailments such as stimulant, diuretic, cough, stomachic and sore eyes. Pharmacological studies have shown that Gymnema sylvestre posses antimicrobial effects. The aim of the present study is to investigate the antibacterial activity of hydroalcoholic leaf extract of Gymnema sylvestre.

MATERIAL AND METHODS
The present study was done in the department of Chemistry P.M.B Gujarati Science College, Indore. The leaves of Gymnema sylvestre were collected from Government Agriculture College, Indore (M.P).

CHEMICALS, MEDIA, ANTIBIOTIC
The organic solvents were obtained from Merck ,India. Nutrient agar and antibacterial agents were obtained from Hi-media, Mumbai, India.
TEST ORGANISMS
Three human pathogenic bacteria were selected for antibacterial activity and include gram negative *e. coli* (ATCC2065), *pseudomonas aeruginosa* (MTCC741), *staphylococcus aureus* (ATCC6538). All microbial strains were pure isolates obtained from Institute of Microbial Technology Chandigarh, India and were maintained in nutrient agar.

EXTRACTION PROCEDURE
Leaves of *Gymnema sylvestre* was washed thoroughly under running tap water, dried and then shade and finally crushed to fine powder in mixture grinder. A quantity of plant sample 100 gm were weighed. The plant material was extracted with hydroalcoholic solvent (1:1) with soxheletion process with the help of soxhlet apparatus. After extraction excess solvent was then evaporated in water bath at 50-100 °C to obtain the crude for antioxidant assay, phytochemical and antimicrobial susceptibility.

ANTIMICROBIAL ACTIVITY
The antimicrobial activity was determined by using agar well diffusion technique. Minimum inhibitory concentration (MIC) was determined by broth dilution method. Different concentration of hydroalcoholic leaf extract was tested separately for each bacterium and inhibition growth in the plates containing test solutions was observed by comparison with blank control plates.

MIC is defined as the lowest concentration of test samples that result in a complete inhibition of visible growth.

RESULT AND DISCUSSION
The inhibition zones and MIC values of hydroalcoholic leaf extract of *Gymnema sylvestre* are presented in table no. 1. From the table it is observed that the zone of inhibition for *E.coli*, *Pseudomonas* and *S.aureus* is maximum at higher concentrations.

Table no.1 Gudmar Plant Antimicrobial Activity with Pathogenic Microorganism

<table>
<thead>
<tr>
<th>Zone of inhibition with different concentration µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. No.</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>E. coli</td>
</tr>
<tr>
<td>Pseudomonas</td>
</tr>
<tr>
<td>S. aureus</td>
</tr>
</tbody>
</table>
Graph-1 Antimicrobial activity of Gudmar plant against Pathogenic microorganisms.

Antimicrobial Activity of Standard Antibiotics

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Levofloxacin</th>
<th>Clindamycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>22mm</td>
<td>-</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>28mm</td>
<td>-</td>
</tr>
<tr>
<td>S. aureus</td>
<td>-</td>
<td>23mm</td>
</tr>
</tbody>
</table>

Graph: 2 Antimicrobial Activity of Standard Antibiotics.
Fig 1. *E.coli* gudmar antimicrobial activity.
Fig 2. *Pseudomonas* gudmar antimicrobial activity.

Fig 3. *S.aureus* gudmar antimicrobial activity.
Fig 4. Levofloxacin *E.coli* antibiotic disc.

Fig 5. Levofloxacin *Pseudomonas* antibiotic disc.
Fig 6. Clindamycin *S.aureus* antibiotic disc.
CONCLUSION
In conclusion, the results provide a scientific base for the traditional use of *Gymnema sylvestre* as antibacterial agent. *Gymnema sylvestre* may posses highest potential for therapeutic action in the treatment of infectious diseases by species *Escherichia coli, Pseudomonas aeruginosa* and *Staphylococcus aureus*. Further study is needed for isolation and characterization of bioactive compounds responsible for antibacterial activity.

REFERENCES